Search results for "Radiative transfer modelling"

showing 2 items of 2 documents

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

2019

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …

010504 meteorology & atmospheric sciencesFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTRE0208 environmental biotechnologySoil ScienceReview02 engineering and technologyPhotochemical Reflectance Index01 natural sciencesArticleGEO/11 - GEOFISICA APPLICATASIF retrieval methodsRadiative transfer modellingRadiative transfer910 Geography & travelComputers in Earth SciencesChlorophyll fluorescence1111 Soil Science1907 GeologyAirborne instruments0105 earth and related environmental sciencesRemote sensingStress detectionGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERA1903 Computers in Earth SciencesPrimary productionGeologyVegetationPassive optical techniquesField (geography)020801 environmental engineeringGEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of GeographySun-induced fluorescenceRemote sensing (archaeology)Sun-induced fluorescence Steady-state photosynthesis Stress detection Radiative transfer modelling SIF retrieval methods. Satellite sensors Airborne instruments Applications Terrestrial vegetation Passive optical techniques. ReviewApplicationsTerrestrial vegetationEnvironmental scienceSatelliteSteady-state photosynthesisSatellite sensors
researchProduct

SCOPE-Based Emulators for Fast Generation of Synthetic Canopy Reflectance and Sun-Induced Fluorescence Spectra

2017

Progress in advanced radiative transfer models (RTMs) led to an improved understanding of reflectance (R) and sun-induced chlorophyll fluorescence (SIF) emission throughout the leaf and canopy. Among advanced canopy RTMs that have been recently modified to deliver SIF spectral outputs are the energy balance model SCOPE and the 3D models DART and FLIGHT. The downside of these RTMs is that they are computationally expensive, which makes them impractical in routine processing, such as scene generation and retrieval applications. To bypass their computational burden, a computationally effective technique has been proposed by only using a limited number of model runs, called emulation. The idea …

spectroscopy010504 meteorology & atmospheric sciencesComputer sciencesun-induced fluorescence0211 other engineering and technologiesEnergy balanceemulation02 engineering and technology01 natural scienceschemistry.chemical_compoundradiative transfer modellingSCOPERadiative transferlcsh:Sciencescene generationChlorophyll fluorescence021101 geological & geomatics engineering0105 earth and related environmental sciencesEmulationArtificial neural networkFluorescencemachine learningLatin hypercube samplingchemistryChlorophyllGeneral Earth and Planetary Scienceslcsh:QAlgorithmRemote Sensing
researchProduct