Search results for "Radiative transfer modelling"
showing 2 items of 2 documents
Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress
2019
Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …
SCOPE-Based Emulators for Fast Generation of Synthetic Canopy Reflectance and Sun-Induced Fluorescence Spectra
2017
Progress in advanced radiative transfer models (RTMs) led to an improved understanding of reflectance (R) and sun-induced chlorophyll fluorescence (SIF) emission throughout the leaf and canopy. Among advanced canopy RTMs that have been recently modified to deliver SIF spectral outputs are the energy balance model SCOPE and the 3D models DART and FLIGHT. The downside of these RTMs is that they are computationally expensive, which makes them impractical in routine processing, such as scene generation and retrieval applications. To bypass their computational burden, a computationally effective technique has been proposed by only using a limited number of model runs, called emulation. The idea …